The launch of MCBEND 10.
نویسندگان
چکیده
MCBEND 10 is the latest release of the general radiation transport Monte Carlo code from the ANSWERS Software Service of Serco Assurance. MCBEND is developed within a Nuclear Code Development (NCD) partnership between Serco Assurance and BNFL. The ANSWERS vision is 'to provide easy-to-use software that meets the current and emerging needs of the user community'. In the case of MCBEND, this vision focuses on the key areas of accuracy, understanding of uncertainties, efficiency and user-friendliness. MCBEND 10 is a major launch of the code with many new and enhanced features. New developments in MCBEND 10 include automatic splitting mesh generation, point energy adjoint for neutrons, calculation of uncertainty in the results due to material cross section uncertainties and a unified source facility. Enhanced features include improved temperature treatment, extended scoring of sensitivity to geometry perturbations, geometry improvements, extensions to formulae and improved user guide image. The user-friendliness of the MCBEND code has been further enhanced by recent developments to the visualisation tools, VISAGE and VISTA-RAY. Developments have been made to the three-dimensional visualisation tool, VISTA-RAY, to simplify the detailed checking of a model, with the option to use a mouse-pointer to select regions of interest for further detail and to visually highlight incorrectly defined areas. A further development to VISTA-RAY is the inclusion of the capability to overlay a representation of a user-designated set of results from a MCBEND analysis on the model. Improvements have also been made to the graphical user interface LaunchPad for submitting and controlling calculation submission, with a common user-image across all the systems. Recent enhancements to LaunchPad include a job-scheduler to simplify processing multiple tasks. A selection of the new developments in MCBEND 10, VISTA-RAY and LaunchPad will be described in this paper.
منابع مشابه
Application of IRDF2002 dosimetry data to shielding benchmarks using the Monte Carlo code MCBEND
The IRDF2002 dosimetry cross-section data are processed into very fine energy groups and added to the detector response library for the Monte Carlo code MCBEND. The IRDF2002 covariances are processed into broad groups to form a MCBEND detector covariance library. A number of benchmark experiments are analysed using MCBEND with both IRDF2002 and IRDF90 data and the results compared. Uncertaintie...
متن کاملRelease of Mcbend 11
MCBEND 11 is the latest version of the general radiation transport Monte Carlo code from AMEC’s ANSWERS Software Service. MCBEND is well-established in the UK shielding community for radiation shielding and dosimetry assessments. Many important developments have been made available to users in this latest release of MCBEND, some of which are described in this paper, including: Geometry Modellin...
متن کاملRobust Integral Sliding-Mode Control of an Aerospace Launch Vehicle
An analysis of on-line autonomous robust tracking controller based on variable structure control is presented for an aerospace launch vehicle. Decentralized sliding-mode controller is designed to achieve the decoupled asymptotic tracking of guidance commands upon plant uncertainties and external disturbances. Development and application of the controller for an aerospace launch vehicle during a...
متن کاملThe Utilization of High Fidelity Simulation in the Support of UAV Launch Phase Design: Three Case Studies
Improvement of the launch phase of a jet powered Unmanned Aerial Vehicle (UAV) with Jet Assisted Take Off (JATO), has been the subject of attention in the UAV industry. Use of flight simulation tools reduces the risk and required some amount of flight testing for complex aerospace systems. Full nonlinear equations of motion are used to study and simulate this maneuver and three case studies of ...
متن کاملTrajectory Optimization for a Multistage Launch Vehicle Using Nonlinear Programming
This work is an example of application of nonlinear programming to a problem of three-dimensional trajectory optimization for multistage launch vehicles for geostationary orbit missions. The main objective is to minimize fuel consumption or equivalently to maximize the payload. The launch vehicle considered here, Europa-II, consists of 5 thrust phases and 2 coast phases. Major parameters of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Radiation protection dosimetry
دوره 115 1-4 شماره
صفحات -
تاریخ انتشار 2005